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Abstract 

Handheld mobile technology is reaching first responders, disaster-relief workers, and soldiers in 
the field to aid in various tasks, such as speech and image recognition, natural-language pro-
cessing, decision making, and mission planning. However, these applications are computation 
intensive, so it is necessary to consider that (1) mobile devices offer less computational power 
than conventional desktop or server computers, (2) computation-intensive tasks consume large 
amounts of battery power, and (3) networks in hostile environments, such as those experienced by 
first responders and soldiers in the field, are often unreliable, and bandwidth is limited and incon-
sistent. While there has been considerable research in code offload to the cloud to enhance com-
putation and battery life, most of this work assumes reliable connectivity between the mobile de-
vice and the cloud—an invalid assumption in hostile environments. This technical note presents a 
reference architecture for mobile devices that exploits cloudlets—virtual-machine-based, code-
offload elements—that are in single-hop proximity to the mobile devices that they serve. Two 
implementations of this reference architecture are presented, along with an analysis of architecture 
tradeoffs.  
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1 Introduction 

The Department of Defense (DoD) is increasingly interested in having soldiers carry or wear 
handheld mobile computing devices to support their mission needs [Morris 2011]. Potentially, 
front-line soldiers can use handheld devices for help with tasks such as speech and image recogni-
tion, natural-language processing, decision making, and mission planning. However, several ob-
stacles impede achieving the capabilities that soldiers need when carrying handheld computing 
devices in mission environments. First, mobile devices offer less computational power than con-
ventional desktop or server computers, and are therefore not an ideal computation platform for 
tasks such as natural-language processing and complex decision making. Second, computation-
intensive tasks, such as image recognition or even global positioning systems (GPS), consume 
large amounts of battery power. Third, networks in mission environments are often unreliable, 
and bandwidth is limited and inconsistent [Satyanarayanan 1996]. To refer to these mission envi-
ronments in which front-line soldiers must operate, we use the phrase tactical edge.1 

A technique for overcoming some of these challenges is known as cyber-foraging—the leverag-
ing of external resources to augment the capabilities of resource-limited mobile devices [Balan 
2002, 2007; de Lara 2001; Flinn 2001, 2002; Goyal 2004; Kemp 2009; Ok 2007; Satyanarayanan 
2001]. However, related work on offloading computation to conserve battery power in mobile 
devices relies on (1) the conventional internet or (2) environments that tightly couple applications 
running on handheld devices and servers on which computations are offloaded (see Section 6). 
While cyber-foraging conserves battery power and reduces computing power requirements, it 
does not address the challenges of unreliable networks and dynamic environments. 

This technical note presents a strategy to overcome the challenges of cyber-foraging for mobile 
platforms at the tactical edge by using cloudlets—discoverable, localized, stateless servers run-
ning one or more virtual machines (VMs) on which soldiers can offload resource-intensive com-
putations from their handheld mobile devices. Cloudlets enhance processing capacity and con-
serve battery power while at the same time providing ease of deployment in the field. 

 
1  First responders operating in crisis situations such as earthquakes, tsunamis, and other similar emergencies can 

also be considered to be operating at the tactical edge. 
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2 Cloudlets as Intermediate Offload Elements 

Code offload from mobile devices to cloud environments has been the topic of much recent re-
search [Christensen 2009; de Leusse 2008; Kumar 2010; Li 2009; Marinelli 2009; Palmer 2009; 
Zhang 2009]. Applications such as Siri also use this approach for voice recognition [Dilger 2011]. 
However, an underlying assumption in these approaches is connectivity to the cloud, which is not 
always available or reliable at the tactical edge.  

A high-level architecture for code offload in hostile environments—such as the tactical edge—is 
proposed by Ha and colleagues and presented in Figure 1 [Ha 2011]. This architecture inserts an 
intermediate layer between the central core (i.e., enterprise cloud) and the mobile devices. The 
large, centralized core at the heart of the architecture is the focus of system administration. This 
core could be implemented as one of Amazon’s data centers or a private enterprise cloud located 
in a stable and secure environment, far from physical threats. At the edges of this architecture are 
offload elements for mobile devices. These elements, or cloudlets, are dispersed, and each is lo-
cated close to the mobile devices that it serves [Satyanarayanan 2009]. This architecture decreases 
latency by using a single-hop network and potentially lowering battery consumption by using 
WiFi or short-range instead of broadband wireless, which typically consumes more energy [Lehr 
2002; Cuervo 2010].  

 

Figure 1: Architecture for Code Offload  

A key attribute of this architecture is that the offload elements are stateless. They may cache state 
persistently on their local storage, but the provisioning of the cache is done from the central core. 
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After installation, an offload element self-provisions from the central core. A final step of provi-
sioning can occur just before use by a mobile device.  

This architecture is resilient to wide-area-network failures. A mobile device does not need to 
communicate with the core during an offload operation; it needs to communicate only with its 
physically closest offload element. The mobile device can continue offloading operations even 
when its offload element is totally disconnected from the core. Communication between the  
offload element and the core is necessary only during provisioning. Once an offload element is 
provisioned, its connection to the core can be disrupted without affecting offload service to mo-
bile clients. Adding a new offload element or replacing an existing one involves very little setup 
or configuration effort. 

One approach to offloading code to cloudlets is VM synthesis [Wolbach 2008; Satyanarayanan 
2009]. This approach involves offloading an application overlay from the mobile device to a 
cloudlet. An application overlay represents the difference between a Base VM with only the oper-
ating system installed and a VM with the application installed. As long as the Base VM Image 
and associated VM manager are available on the offload element, the application can be made to 
execute even if it was not previously deployed to that specific platform. In effect, the mobile de-
vice becomes the vector by which the needed application is deployed to the tactical-edge environ-
ment. This approach takes advantage of properties of VMs that reduce hardware dependencies—
the same VMs can operate on several hardware platforms, and a single hardware platform can 
support multiple VMs—to provide flexibility in highly volatile tactical-edge environments, where 
it is difficult to assure the existence of the right hardware or OS platform for cyber-foraging. 
 

 
 

Figure 2: Application Overlay Process 

An application overlay is created once per application as Figure 2 depicts. Here the Base VM is a 
VM disk image file that is obtained from the central core and saved to a cloudlet that runs a VM 
manager compatible with the Base VM. The VM manager starts the Base VM and the application 
is installed. After installation, the VM is shut down. At this point, a copy of the modified Base 
VM Disk Image is saved as the Complete VM Disk Image. The application overlay is calculated 
as the binary diff 2 between the Complete VM Disk Image and the Base VM Disk Image. The 

 
2  The binary diff tool uses the VCDIFF (RFC 3284) format and compression. 
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Base VM is then deployed to any platform that might conceivably serve as a cloudlet. As we previ-
ously suggested, the cloudlet may support multiple VMs, thereby reducing hardware dependencies 
on the offload element and between the offload element and mobile device. The mobile device 
would then carry as many overlays as necessary for achieving a mission and would be able to exe-
cute on any cloudlet that has the same Base VM with which the application overlay was created. 

The cloudlet application of VM technology provides great flexibility in the supported types and 
platforms of applications and also reduces setup and administration time. For example, a cloudlet 
might run in a tactical operations center (TOC) or a Humvee. Because no application-specific 
software is installed on the server, there is no need to synchronize release cycles between the cli-
ent and server portions of apps, which greatly simplifies the deployment and configuration man-
agement of apps in the field. 

VM synthesis is particularly useful in tactical environments characterized by unreliable networks 
and bandwidth, unplanned loss of cyber-foraging platforms, and a need for rapid deployment. For 
example, imagine a scenario in which a soldier must execute a computation-intensive app config-
ured to work with cloudlets. At runtime, the app discovers a nearby cloudlet located on a Humvee 
and offloads the computation-intensive portion of code to it. However, due to enemy attacks, loss 
of network connectivity, or exhaustion of energy sources on the cloudlet, the mobile app is dis-
connected from the cloudlet. The mobile app can then locate a different cloudlet (e.g., in an un-
manned aerial vehicle [UAV]) and have the app running in a short amount of time with no need 
for any configuration on the app or the cloudlet. This runtime flexibility enables the use of what-
ever resources become opportunistically available as well as replacement of lost cyber-foraging 
resources and dynamic customization of newly acquired cyber-foraging resources. 

The following sections present the reference architecture for code offload in hostile environments 
and details of two prototype implementations.  
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3 Reference Architecture 

Tactical environments are characterized by uncertainty in available resources such as computa-
tional capability and bandwidth. In addition, many applications that are useful in these environ-
ments are computation intensive; these include face recognition, natural-language processing, 
route calculation, and text recognition, all of which require some form of input from sensors on 
the device. Soldiers and first responders executing missions are often away from their bases for 
many hours and cannot afford to carry many extra batteries. Therefore, a solution for code offload 
in hostile environments must consider (1) native apps that exploit device sensors, (2) code offload 
elements that can be quickly configured and deployed, and (3) battery consumption on the mobile 
device. 

Figure 3 presents a reference architecture for mobile devices that exploit cloudlets for code off-
load. The major components of this architecture are the Cloudlet Host and the Mobile Client. 

The Cloudlet Host is a physical server that hosts the following: 

• a discovery service that broadcasts the cloudlet IP address and port so that it can be located by 
mobile devices 

• the Base VM Image that is used for VM synthesis 

• a Cloudlet Server that handles code offload in the form of application overlays, performs VM 
synthesis, and starts guest VM instances with the resulting VM images  

• a VM Manager that serves as a host for all guest VM instances that contain the computation-
intensive server component of the corresponding mobile app 

The Mobile Client is a handheld or wearable device that hosts the following: 

• a Cloudlet Client app that discovers cloudlets and uploads application overlays to the selected 
cloudlet 

• a set of Cloudlet-Ready Apps that operate as clients of the server code running in the cloudlet 

The Mobile Client stores an application overlay for each Cloudlet-Ready App that a user would 
conceivably want to execute and for which computation offloading is appropriate. Each applica-
tion overlay is generated from the same Base VM Image that resides in the cloudlet. In an opera-
tional setting, these Base VM Images could be retrieved from the central core shown in Figure 1. 

To validate the feasibility of the proposed reference architecture for tactical environments, we 
constructed a prototype that we describe in the next section. 



 

CMU/SEI-2012-TN-015 | 6  

 

Figure 3: A High-Level Reference Architecture for Cloudlet-Based Code Offload 

 

...

...

...
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4 Initial Prototype 

The initial prototype is an implementation of a face-recognition application in which the client is 
an Android app and the cloudlet contains the computation-intensive code that performs face 
recognition. In summary, the client  

1. locates a cloudlet via a discovery protocol 

2. sends the application overlay (Face-Recognition Server code) to the cloudlet for VM synthesis 

3. captures images and sends them to the Face-Recognition Server that now runs in the cloudlet 

This initial prototype was created based on the reference architecture that Figure 3 illustrates. Fig-
ure 4 depicts the prototype architecture.  

 

 

Figure 4: The Architecture of the Initial Prototype 
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4.1 Base VM Image Creation 

The Base VM Image for this prototype is a 3GB image with Microsoft XP plus the necessary sys-
tem updates. To keep the size of the image small, “system restore” was turned off and unneces-
sary system components were removed using the DiskCleanup utility. However, additional com-
ponents were included in the Base VM Image to enable communication between the Guest VM 
and the Cloudlet Server. This additional complexity was one of the reasons for revising the initial 
prototype (see Section 5.1). 

A major difference between the prototype and the cloudlet work presented by Satyanaranyan is 
the type of client involved [Satyanaranyan 2009]. Satyanaranyan’s work uses a virtual network 
computing (VNC) client that acts as a remote desktop for the VM [Richardson 1998]. In our pro-
totype, the Face Recognition Client is a rich client (native app) that interacts with a Face Recogni-
tion Server inside the VM (i.e., a server within a server). The Face Recognition Client requires the 
IP address and port of the Face Recognition Server to establish a network connection. However, 
the Cloudlet Server does not know directly the IP address and port of the synthesized VM, be-
cause the IP address is assigned by the Dynamic Host Configuration Protocol (DHCP) server exe-
cuting in bridged mode, and the VM host has no visibility into that assignment. The Cloudlet Cli-
ent uses an HTTP request to start the cloudlet setup and expects an HTTP response from the 
Cloudlet Server that contains the IP address and port of the Face Recognition Server. 

To solve this problem, a CloudletStartup Windows service (implemented in Python) is included in 
the Guest VM that performs three functions: 

1. starts the Face Recognition Server—in a separate thread 

2. reads the IP address and port from the Face Recognition Server configuration file and com-
municates it to the Cloudlet Server in an HTTP POST 

3. sends a periodic heartbeat to the Cloudlet Server in an HTTP POST to indicate that it is still running 

In addition, the Windows registry entry KeepAliveTime was changed to one second (default is 
two hours) so that the Face Recognition Server can close the socket if the communication channel 
between the Face Recognition Client and the Face Recognition Server  is broken [Microsoft 
2011]. The communication channel can break when there is (1) a phone disconnection from the 
network (2) an error in the Face Recognition Client that causes it to exit without closing the sock-
et, or (3) a network issue in the VM.  

After completion of these steps, the VM was shut down and the resulting image file was saved as 
the Base VM Image. 

4.2 Tools for Overlay Creation 

The overlay for the face-recognition application was created by following the steps presented in 
Figure 2. The VM Manager was started using the Base VM Image created as we described in the 
previous section, the Face Recognition Server was installed, and the VM shut down. The specific 
tools to “Calculate Diff between Complete and Base VM Image” are 

• xdelta3: an open-source binary diff tool that generates a file as the difference between the 
Base VM Disk Image and the Complete VM Disk Image [xdelta 2012] 
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• lzma: a set of public-domain libraries and tools that compress the file from the previous step 
using lzma—the Lempel-Ziv-Markov chain data-compression algorithm [7Zip 2012] 

The resulting file is the application overlay. The Cloudlet Server uses these same tools in reverse 
order when it performs VM synthesis. 

4.3 Cloudlet Host 

The Cloudlet Host is an Ubuntu 10.10 Linux server that hosts the following subcomponents: 

4.3.1 KVM (Kernel-Based Virtual Machine) 

The virtualization infrastructure that we used in the prototype is KVM [KVM 2012a]. We made 
this choice primarily for ease of implementation; KVM is open source and has good community 
support. KVM runs a Guest VM for each offloaded application. The Guest VM for the face-
recognition application is Windows XP, but KVM supports most popular operating systems 
[KVM 2012b]. 

4.3.2 Cloudlet Server 

The core of the Cloudlet Server is an HTTP Server implemented using CherryPy, an open source 
Python implementation of a basic HTTP server [CherryPy 2012]. The Cloudlet Client sends the 
compressed overlay as an HTTP POST request. Upon receipt of the overlay, the following opera-
tions execute: 

1. The overlay is decompressed using the tools listed in Section 4.2. 

2. VM synthesis is performed through use of xdelta3 to apply the overlay to the Base VM Im-
age and create the VM Image that contains the Face Recognition Server.  

3. The synthesized VM is started in bridged network mode (i.e., it obtains a unique IP from the 
DHCP server), so that the Guest VM has a unique network-accessible IP address, and waits 
for notification that the Guest VM has successfully started [Ubuntu 2012a]. The Cloudlet 
Server uses pyinotify—a Python file-system change-monitoring utility—to subscribe to 
changes in the face-recognition server IP address and port file [Github 2012]. This provides a 
mechanism for inter-thread communication. 

4. On startup, the Guest VM executes the CloudletStartup Windows service (see Section 4.1) to 
communicate the IP address and port back to the Cloudlet Server, where another thread 
writes the Face Recognition Server IP address and port to a file. 

5. As soon as the file changes, the waiting thread in Step 3 receives notification. It reads the file 
and sends a response to the Cloudlet Client that contains the IP address and port on which 
the Face Recognition Server will be listening. 

4.3.3 Discovery Service 

The Discovery Service is based on the Avahi implementation of Zero Configuration Networking 
(ZeroConf) [Avahi 2012]. Zeroconf is a local network-discovery protocol for creating an IP net-
work [Zeroconf 2012]. The Discovery Service broadcasts the IP address and port of the Cloudlet 
Server.  
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4.4 Cloudlet Client 

The Cloudlet Client is an Android app that performs the following operations: 

1. discovers cloudlets in the local network through information broadcast by the Discovery 
Service that resides in the Cloudlet Host  

2. creates an HTTP connection to the Cloudlet Server for overlay transmission by using the IP 
address and uploads the overlay 

3. waits for an HTTP response from the Cloudlet Server that contains the IP address and port 
on which the Face Recognition Server is listening  

4. writes the IP address and port of the Face Recognition Server to a local file that the Face 
Recognition Client will use 

5. launches the Face Recognition Client 

4.5 Face Recognition Client 

The Face Recognition Client is an Android app that executes in client/server mode with the Face 
Recognition Server running in the Guest VM. On launch, the Face Recognition Client reads the 
local file that contains the IP address and port of the Face Recognition Server and opens a TCP/IP 
connection to it. Images that the camera captures on the mobile device are sent to the Face 
Recognition Server. 

4.6 Face Recognition Server 

The Face Recognition Server is a program written in C++ that uses the OpenCV image-
recognition library to process images sent from the Face Recognition Client for training or recog-
nition purposes [OpenCV 2012]. When in recognition mode, it returns coordinates for the recog-
nized faces plus a measure of confidence.  

4.7 Prototype Execution 

The sequence diagram in Figure 5 represents the initial part of the prototype execution that 
launches the Guest VM. This part of the execution is independent of the application. At the end of 
this sequence, the Cloudlet Client is blocked until it receives an HTTP response from the Cloudlet 
Server. 

The sequence diagram in Figure 6 shows the second part of the prototype execution in which the 
Guest VM is launched and the Face Recognition Server is started. An HTTP response is sent back 
from the Cloudlet Server to the Cloudlet Client indicating that the Face Recognition Server is 
running and listening at the returned IP address and port. After receiving this response, the Cloud-
let Client starts the Face Recognition Client, which opens a socket to the Face Recognition Server 
and starts execution.   
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Figure 5: Initial Communication—Cloudlet Discovery to Guest VM Launch for the Initial Prototype 

 

 

Figure 6: Face Recognition—from Guest VM Launch to App Execution for the Initial Prototype 
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4.8 Prototype Evaluation 

We evaluated the prototype using the previously described face-recognition application and two 
additional computation-intensive applications that are representative of capabilities that soldiers 
need at the tactical edge [Ha 2011]. Each application has a client portion that is an Android app 
and a server portion that corresponds to the computation-intensive offloaded code that runs in the 
cloudlet. We describe the server-side applications below. 

• OBJECT: Linux C++ application based on the CMU MOPED object-recognition libraries 
[CMU 2012a]. It receives an input image from the mobile client and returns the identities of 
recognized objects in the image. 

• FACE: Windows XP C++ face-recognition application described in Section 4.6 

• SPEECH: Windows XP Java application based on the CMU Sphinx-4 Speech Recognition 
Toolkit [CMU 2012b]. It receives a WAV file from the mobile client and returns a text tran-
script of the input file. 

In addition, an overlay corresponding to a NULL application (VM simply started and stopped) 
serves as a baseline for the analysis of transmission overhead and battery consumption. Table 1 
displays the application data. 

Table 1: Application Data for Initial Prototype 

Application Platform Language Application Size 
(MB) 

Base VM Disk 
Image Size (MB) 

VM Disk Image 
Overlay Size (MB) 

OBJECT Linux C++ 27.50 3546 165.32 

FACE Windows XP C++ 17.65 3073   43.55 

SPEECH Linux Java 51.04 3546 176.23 

NULL Linux N/A N/A 3546     0.12 

We conducted all experiments using the configuration shown in Figure 7. We measured energy 
usage with a power monitor from Monsoon Solutions, Inc., and the corresponding power-tool 
software [Monsoon 2012]. To ensure good experimental control, interactive inputs were scripted. 

 

Figure 7: Evaluation Infrastructure Setup 

Table 2 lists the average times for each step of the process and the average energy consumption of 
each application, and Figure 8 displays graphs of the data. All times are measured from the client 
perspective and include HTTP request/response times. 
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Table 2: Execution Data for Initial Prototype 

Application Upload Overlay 
(seconds) 

Decompress Overlay 
(seconds) 

VM Synthesis 
(seconds) 

Start VM 
(seconds) 

Energy 
(Joules) 

OBJECT 75.95 17.91 37.24 34.81 189.76 

FACE 19.25   4.77 21.91 55.01   82.94 

SPEECH 79.89 19.08 35.34 34.95 197.37 

NULL   0.23   0.07 34.95 33.97   56.45 

 

Figure 8: Measures per Application for the Initial Prototype 

Table 2 and Figure 8 show that the Upload Overlay operation consumes the largest amount of 
time, which depends on overlay size. VM Synthesis and Start VM almost equally consume the 
second-largest time. VM Synthesis time is smaller for FACE because the sum of the base VM size 
and overlay size is smaller. FACE is also the outlier for Start VM because it is the only applica-
tion that runs on Windows and therefore has a longer boot time. Energy consumption also de-
pends largely on overlay size. Average application ready time (time between upload overlay and 
Start VM) is between 101 and 166 seconds for the non-null applications. Given the dependence of 
these numbers on base VM image size and application overlay size, reducing the size of these 
files would reduce both application ready time and energy consumption. We addressed file size 
and implementation complexity in a revised prototype that we describe in the next section.  
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5 Revised Prototype 

In revising the initial prototype, our goals were first, to reduce application complexity and de-
pendencies, and second, to decrease overall application ready time. The revised architecture 
shown in Figure 9 uses the same implementation of face recognition as for the initial prototype. 

 

Figure 9: Revised Prototype Architecture 
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storage allocation, regardless of application demand. In essence, the raw image is treated as a disk 
drive, which tends to result in large images because all storage is pre-allocated as part of the im-
age. This image-size issue is why one challenge for the initial prototype was to create the smallest 
image possible so that the overlay would be of the smallest size possible as well. Raw images tend 
to have better performance because there is no need to allocate disk space at runtime. 

Another disk-image format that KVM supports is QEMU copy on write 2 (qcow2). The advantage 
of qcow2 for the prototype is that storage allocation is delayed until actually needed. This means 
that the size of the image will correspond to the operating system plus the application and, there-
fore, be optimized, as will be the size of the overlay. A disadvantage of qcow2 is the overhead 
that storage allocation causes at runtime. Reduction in the amount of time for overlay transition 
made this tradeoff acceptable for the revised prototype. 

5.1.2 Memory Snapshot Overlay Plus Disk-Image Overlay 

The initial prototype transfers only the disk-image overlay. This means that the VM is always 
cold started and requires application-specific scripts to start the application and send connection 
information back to the client, as explained in Section 4.1. 

In the revised prototype, when the base VM image is created, a disk and a memory snapshot are 
immediately created as well. The three files (Base VM Disk Image, Base Memory Snapshot, and 
Base Disk Snapshot) now constitute the base VM image. When the base VM image is started, as 
Figure 10 illustrates, Base Memory Snapshot and Base Disk Snapshot are immediately applied. 
The application is installed, the VM is suspended, and a second set of snapshots is saved. Over-
lays are created as the difference between the sets of snapshots, which accounts for a very small 
set of overlays. The tradeoff is that, in this implementation, two overlays are sent from the client 
to the cloudlet. However, the advantage is that there is no need to create startup scripts, leading to 
fewer dependencies on the base VM. In addition, because the VM starts from a suspended state 
instead of from a stopped state, the VM Start time is faster.  

 

Figure 10: Revised Application Overlay Creation Process 

5.1.3 KVM in NAT Mode and Port Redirection 

One of the main complexities of the initial prototype was the KVM-to-Cloudlet-Host communica-
tion, explained in Section 4.1, that allowed the mobile device to connect directly to the Face 
Recognition Server inside the VM.  
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The revised prototype starts the synthesized VM in NAT (Network Address Translation) mode 
instead of bridged mode, so that the Guest VM can share the same IP address as the Cloudlet 
Host. However, in NAT mode the Guest VM is not directly accessible from the client. When the 
Cloudlet Server starts the synthesized VM in NAT mode, it includes the port that the Guest VM 
should listen on as a parameter. The Cloudlet Server then maps an externally accessible port on 
the Cloudlet Host to the port assigned to the Guest VM. The externally accessible port number is 
sent to the client and the Cloudlet Host redirects all communication to the Guest VM. The tradeoff 
is that NAT is restricted to certain protocols (HTTP, SMTP, FTP) and cannot be bound to ports 
numbered lower than 1024 without root privileges.  

Scalability could become an issue if the port request exceeds the number of available ports. How-
ever, our revision greatly simplifies deployment because the Windows service, Python runtime, 
CloudletIDPing Python script, and pyinotify are no longer necessary. In addition, NAT is more 
secure than bridged mode because the VM is firewalled from the outside. 

5.2 Revised Prototype Execution 

The sequence diagram in Figure 11 represents the complete revised prototype execution. Discov-
ery, upload, and decompression are conducted as in the initial prototype. VM synthesis in the re-
vised prototype applies both the disk overlay and the memory snapshot to the Base VM image. 
The Cloudlet Server starts and launches the synthesized VM on a specific port. This port number 
is sent back to the Cloudlet Client in an HTTP response. Upon receiving the port number, the 
Cloudlet Client starts the Face Recognition Client, which opens a socket to the Face Recognition 
Server and starts execution. The main difference from the initial prototype is that no startup 
scripts are involved on the cloudlet side.  
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Figure 11: Revised Prototype Execution 

5.3 Revised Prototype Evaluation 

We evaluated the revised prototype using the same applications as were listed in Section 4.8. Ta-
ble 3 presents the application data. Overlay size is considerably smaller, except for FACE, due to 
application characteristics such as language, use of DLLs (dynamic link libraries), configuration 
files, and so on.  

Table 3: Application Data for Revised Prototype 

Application Base VM 
Disk Image 
qcow2 (MB) 

Base Disk 
Snapshot  

qcow2 (MB) 

Base Memory 
Snapshot 

(MB) 

Compressed VM 
Disk Image Overlay 

(MB) 

Compressed 
Memory Snapshot 

Overlay (MB) 

OBJECT 3558 17 554 94 293 

FACE 2421 15 278 71 101 

SPEECH 3558 17 554 86 257 

NULL 3558 17 554  1    3 

Average times for each step of the process and average energy consumption are shown in Table 4 
and graphed in Figure 12. 
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Table 4: Execution Data for Revised Prototype 

Application Upload Overlays  
(seconds) 

Decompress Overlays 
(seconds) 

VM Synthesis 
(seconds) 

Start VM 
(seconds) 

Energy 
(Joules) 

OBJECT 198.24 43.85 19.97 3.74 357.98 

FACE 88.21 19.42   8.10 3.41 158.36 

SPEECH 181.53 40.08 18.60 3.61 243.82 

NULL    1.04   0.24   5.81 3.46   10.55 

 

Figure 12: Measures per Application for Revised Prototype 

As Figure 13 illustrates, although the reductions in VM Synthesis and Start VM times are consid-
erable with respect to the initial prototype, Upload Overlay and Decompress Overlay times are 
higher because of the total size of the combined overlays (disk plus memory). Consequently, as 
Figure 14 shows, energy consumption increases with overlay size. However, implementation, ap-
plication configuration, and VM-host-guest communication are simplified, and Start VM time is 
more consistent, regardless of the operating system running inside the VM.  

The bandwidth between the mobile device and the cloudlet during the experiments was approxi-
mately 13 Mbps, even when using 802.11n wireless. This lower-than-expected data rate may be 
caused by radio interference in the environment where the experiments were conducted. The bot-
tom line is that, for the revised prototype to pay off, the efficiencies gained in VM Synthesis and 
Start VM would require supplementation with greater bandwidth. 
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Figure 13: Comparative Execution Data for Initial and Revised Prototypes 

 

 

Figure 14: Comparative Overlay Size and Energy Data for Initial and Revised Prototypes 
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5.4 Considerations for Data-Reliant Applications 

A large corpus of data is an important part of many applications that are relevant to hostile envi-
ronments. For example, a face-recognition application typically requires a collection of facial im-
ages of persons of interest. Including this large data source as part of the overlay will increase its 
size, which in turn will require a greater transmission time, which will lead to greater battery con-
sumption. This situation is unacceptable in many environments beyond hostile environments. 

We implemented a solution by installing the face database in a Samba share inside the Cloudlet 
Host so that the database would be accessible from the Windows-based Face Recognition Server 
[Eckstein 1999]. During the “Install Application” step of the process, outlined in Figure 10, the 
database location (part of the application configuration file) was changed to point to the Samba 
share. An advantage of this approach is that the data is not part of the overlay. In addition, multi-
ple VM instances running the Face Recognition Server could share the same database. The disad-
vantage is additional complexity of the cloudlet-deployment process, for two reasons: 

1. Installation of the Samba share would have to become part of the “standard cloudlet configu-
ration.”  

2. Databases for every potential application that would run on the cloudlet would require instal-
lation inside the Samba share, either at cloudlet-configuration time or at application-install 
time.  

Another scenario to consider is one in which the data source is shared by many cloudlets, in 
which updates may be performed in the field at many different locations. VMs running the face-
recognition application inside each cloudlet will need access to relevant parts of this data collec-
tion. These types of applications need cloud-wide distributed data access that is resilient to net-
work disruptions. An option is to use a cloud-based distributed file system with a persistent cache 
of file data on each cloudlet that can work in disconnected mode. An example of such a system is 
Coda—a cloud-based distributed file system that features aggressive client caching on local disks, 
callback-based cache coherence, location transparency, organization of the file-name space into 
logical volumes to facilitate system administration, and file protection based on access-control 
lists [CMU 2012c]. We installed a Coda client on the Cloudlet Host within the Samba share and 
pointed the data location for the face-recognition application to the Coda cache. The Coda server 
that contained the database was on another machine that we called the cloud. We achieved the 
same results as when the data source resided on the cloudlet. The advantage is that all instances of 
the Face Recognition Server running in any cloudlet would have access to the same data. The 
cloudlet Coda cache would be updated as needed if there were access to the cloud. Otherwise the 
application would still work with outdated data until access to the cloud was restored. The disad-
vantage is that Coda would have to become part of the “standard cloudlet configuration,” as in the 
previous case.  

 

 

 

 



 

CMU/SEI-2012-TN-015 | 21  

6 Related Work 

There is a considerable amount of work, conducted as early as 2001, that relates to code offload 
from mobile devices to cloud environments [Balan 2002, 2007; Christensen 2009; de Lara 2001; 
de Leusse 2008; Flinn 2001, 2002; Goyal 2004; Kemp 2009; Kumar 2010; Li 2009; Marinelli 
2009; Ok 2007; Palmer 2009; Satyanarayanan 2001; Zhang 2009]. However, this work in cyber-
foraging from mobile devices assumes that acceptable networking conditions prevail between a 
mobile device and its offload site. Although the bandwidth and latency of this connectivity varied, 
a universal assumption in previous work was that connectivity was “good enough.” To the best of 
our knowledge, our work is the first to investigate the challenges of cloud offload in hostile envi-
ronments and to propose an architectural solution to the problem.  

One example of closely related work is MAUI [Cuervo 2010]. MAUI is a system that enables the 
fine-grained energy-aware offload of mobile code to offload elements, with minimum program-
mer effort—code annotations indicate methods that could be executed remotely. However, this 
approach is platform specific (Microsoft .NET) and therefore would limit the applications that 
could be offloaded.  

Another closely related effort is CloneCloud [Chun 2011]. Unlike with MAUI, applications do not 
require modification. Before execution, the partitioner portion of the system uses static analysis 
and dynamic profiling to partition the application executable, based on optimization of execution 
time and energy use. The runtime portion of the system enables the application, which is running 
in an application-level VM, to automatically migrate threads from the mobile device (based on the 
partitioning information) to a device clone running in the cloud and to reintegrate the migrated 
thread along with its state back to the mobile device when execution is finished. This work also 
assumes connection to the cloud, but it could be implemented such that threads are migrated to a 
cloudlet instead of a cloud. However, supported platforms are limited (e.g., Java VM, Android 
Dalvik VM, Microsoft .NET) and deployment and hardware requirements would be difficult to 
achieve in tactical-edge environments.  

Other work that establishes a foundation for work in cyber-foraging includes the following: 

• Goyal and Carter proposed a VM-based approach in which a discoverable virtual machine 
server acts as a surrogate to run client application code [Goyal 2004]. This approach address-
es security issues, but requires the surrogate to be connected to the internet to locate and 
download client application code and also requires code to be partitioned at development 
time.  

• Similar to this approach is the Locusts framework that enables the discovery of cyber-
foraging resources (surrogate peers) [SourceForge.net 2009]. Peers can offload coarse-
grained tasks to other peers as well as process offloaded tasks from other peers [Kristensen 
2008]. Applications must be partitioned in advance into locally executed code and remotely 
executable tasks. 

• Work proposed by Chen and colleagues is not VM-based, but includes a mechanism for de-
ciding (1) whether to execute locally or remotely, based on size of method input data and 
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wireless channel conditions, and (2) whether to interpret bytecode or compile native code 
[Chen 2004]. The solution works only for Java code, and applications require modifying to 
enable code offload.  

• Kemp and colleagues propose an approach that leverages the Ibis high-performance distribut-
ed-computing middleware [Kemp 2009]. The server portion is sent from the mobile device to 
the surrogate at runtime, but applications must be written as distributed applications using the 
Ibis programming environment and the server. 

Our work implements an instance of cloudlet strategy presented by Satyanarayanan that uses a 
thick-client approach (native app) instead of a thin, VNC-based client [Satyanarayanan 2009]. 
The advantage of the VNC approach is that applications would not require any modification be-
cause they would run completely on the server. However, many of the applications at the edge use 
sensors to capture information about the environment. A better fit for the edge scenario involves 
splitting the application into (1) a very simple native app that runs on the mobile device to capture 
manual or sensed input, and (2) a server portion that runs all the expensive computation. The ad-
vantage of the VM-based approach is simplicity of setup and deployment that relies on (1) generic 
servers running pre-configured Base VMs (cloudlets) and (2) cloudlet-ready mobile devices load-
ed with overlays for computation-intensive applications. There is no need for special hardware or 
middleware. 
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7 Conclusions and Future Work 

Today there is substantial consensus that cloud offload of resource-intensive application execution 
is a core technique in mobile computing. In this report, we have described a reference architecture 
for code offload in tactical-edge environments and presented two viable implementations along 
with their architectural tradeoffs. A difficult problem exposed by this architecture involves rapid 
delivery of large application overlays to offload sites as well as rapid application ready time.   

Current and possible future research that we are exploring includes 

• other forms of code offload, such as demand paging from the cloud, that consume less energy 
and provide better launch times but have reliable communication between cloudlets and the 
cloud [Ha 2011] 

• rapid VM synthesis, through  

− extension of the discovery protocol to enable VM caching so that overlays do not always 

require transmission  

− exploiting of multicore architecture to parallelize VM synthesis activities  

• mobility-induced cloudlet handoffs to transfer state between cloudlets with minimal interrup-
tion to a moving user 

• a cloudlet-selection mechanism that maps application needs to cloudlet characteristics ex-
posed as cloudlet metadata during the cloudlet-discovery process 

If cyber-attacks become more prevalent on the public internet, cloud offload of mobile devices 
will become increasingly unreliable. Someday, the entire public internet may have to be viewed as 
a hostile environment. The issues explored in this report in the context of the tactical edge will 
then hold much broader relevance. 
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